熱電偶 測溫原理: 兩種不同成分的導體(稱為熱電偶絲或熱電極)兩端接合成回路,當接合點的溫度不同時,在回路中就會產(chǎn)生電動勢,這種現(xiàn)象稱為熱電效應,而這種電動勢稱為熱電動勢。熱電偶就是利用這種原理進行溫度測量的,其中,直接用作測量介質(zhì)溫度的一端叫做工作端(也稱為測量端),另一端叫做冷端(也稱為補償端);冷端與顯示儀表連接,顯示出熱電偶所產(chǎn)生的熱電動勢,通過查詢熱電偶分度表,即可得到被測介質(zhì)溫度。 熱電偶是溫度測量中常用的傳感器。其主要好處是寬溫度范圍和適應各種大氣環(huán)境,而且結實、價低,無需供電,尤其便宜。熱電偶由在一端連接的兩條不同金屬線(金屬A和金屬B)構成,如圖2所示。當熱電偶一端受熱時,熱電偶電路中就有電勢差??捎脺y量的電勢差來計算溫度。 由于電壓和溫度是非線性關系,因此需要為參考溫度(Tref)作第二次測量,并利用測試設備軟件和∕或硬件在儀器內(nèi)部處理電壓—溫度變換,以終獲得熱偶溫度(Tx)。Agilent34970A和34980A數(shù)據(jù)采集器均有內(nèi)置的測量了運算能力。 簡而言之,熱偶是簡單和通用的溫度傳感器,但熱偶并不適合高精度的應用。 常用的熱電偶從-50~+1600℃均可連續(xù)測量,某些特殊熱電偶低可測到-269℃(如金鐵鎳鉻),高可達+2800℃(如鎢-錸)。
熱敏電阻 測溫原理: 熱電阻是基于電阻的熱效應進行溫度測量的,即電阻體的阻值隨溫度的變化而變化的特性。因此,只要測量出感溫熱電阻的阻值變化,就可以測量出溫度。
目前主要有金屬熱電阻和半導體熱敏電阻兩類。 金屬熱電阻的電阻值和溫度一般可以用以下的近似關系式表示。
熱敏電阻是用半導體材料,大多為負溫度系數(shù),即阻值隨溫度增加而降低。溫度變化會造成大的阻值改變,因此它是靈敏的溫度傳感器。但熱敏電阻的線性度極差,并且與生產(chǎn)工藝有很大關系。制造商給不出標準化的熱敏電阻曲線。
熱敏電阻體積非常小,對溫度變化的響應也快。但熱敏電阻需要使用電流源,小尺寸也使它對自熱誤差極為敏感。
熱敏電阻在兩條線上測量的是溫度, 有較好的精度,但它比熱偶貴,可測溫度范圍也小于熱偶。一種常用熱敏電阻在25℃時的阻值為5kΩ,每1℃的溫度改變造成200Ω的電阻變化。注意10Ω的引線電阻僅造成可忽略的0.05℃誤差。它非常適合需要進行快速和靈敏溫度測量的電流控制應用。尺寸小對于有空間要求的應用是有利的,但必須注意防止自熱誤差。
測量技巧 熱敏電阻體積小是優(yōu)點,它能很快穩(wěn)定,不會造成熱負載。不過也因此很不結實,大電流會造成自熱。由于熱敏電阻是一種電阻性器件,任何電流源都會在其上因功率而造成發(fā)熱。功率等于電流平方與電阻的積。因此要使用小的電流源。如果熱敏電阻暴露在高熱中,將導致性的損壞。
|